主頁 > 資料庫 > MPP (Massively Parallel Processing)大規模并行處理

MPP (Massively Parallel Processing)大規模并行處理

2020-09-10 06:11:41 資料庫

1、什么是mpp?

MPP (Massively Parallel Processing),即大規模并行處理,在資料庫非共享集群中,每個節點都有獨立的磁盤存盤系統和記憶體系統,業務資料根據資料庫模型和應用特點劃分到各個節點上,每臺資料節點通過專用網路或者商業通用網路互相連接,彼此協同計算,作為整體提供資料庫服務,非共享資料庫集群有完全的可伸縮性、高可用、高性能、優秀的性價比、資源共享等優勢,

簡單來說,MPP是將任務并行的分散到多個服務器和節點上,在每個節點上計算完成后,將各自部分的結果匯總在一起得到最終的結果(與Hadoop相似),

2、MPP(大規模并行處理)架構

MPP架構的系統(Presto/Impala/SparkSQL/Drill等)有很好的資料量和靈活性支持,但是對回應時間是沒有保證的,當資料量和計算復雜度增加后,回應時間會變慢,從秒級到分鐘級,甚至小時級都有可能,

 

               (MPP架構)

3、 MPP架構特征

● 任務并行執行;

● 資料分布式存盤(本地化);

● 分布式計算;

● 私有資源;

● 橫向擴展;

● Shared Nothing架構,

● 缺點:性能不穩定,

4、 MPP服務器架構

它由多個SMP服務器通過一定的節點互聯網路進行連接,協同作業,完成相同的任務,從用戶的角度來看是一個服務器系統,其基本特征是由多個SMP服務器(每個SMP服務器稱節點)通過節點互聯網路連接而成,每個節點只訪問自己的本地資源(記憶體、存盤等),是一種完全無共享(Share Nothing)結構,因而擴展能力最好,理論上其擴展無限制,

5、MPPDB

MPPDB是一款 Shared Nothing 架構的分布式并行結構化資料庫集群,具備高性能、高可用、高擴展特性,可以為超大規模資料管理提供高性價比的通用計算平臺,并廣泛地用于支撐各類資料倉庫系統、BI 系統和決策支持系統

6、MPPDB架構

MPP 采用完全并行的MPP + Shared Nothing 的分布式扁平架構,這種架構中的每一個節點(node)都是獨立的、自給的、節點之間對等,而且整個系統中不存在單點瓶頸,具有非常強的擴展性,

7、 MPPDB特征

MPP 具備以下技術特征:

1) 低硬體成本:完全使用 x86 架構的 PC Server,不需要昂貴的 Unix 服務器和磁盤陣列;

2) 集群架構與部署:完全并行的 MPP + Shared Nothing 的分布式架構,采用 Non-Master 部署,節點對等的扁平結構;

3) 海量資料分布壓縮存盤:可處理 PB 級別以上的結構化資料,采用 hash分布、random 存盤策略進行資料存盤;同時采用先進的壓縮演算法,減少存盤資料所需的空間,可以將所用空間減少 1~20 倍,并相應地提高 I/O 性能;

4) 資料加載高效性:基于策略的資料加載模式,集群整體加載速度可達2TB/h;

5) 高擴展、高可靠:支持集群節點的擴容和縮容,支持全量、增量的備份/恢復;

6) 高可用、易維護:資料通過副本提供冗余保護,自動故障探測和管理,自動同步元資料和業務資料,提供圖形化工具,以簡化管理員對資料庫的管理作業;

7) 高并發:讀寫不互斥,支持資料的邊加載邊查詢,單個節點并發能力大于 300 用戶;

8) 行列混合存盤:提供行列混合存盤方案,從而提高了列存資料庫特殊查詢場景的查詢回應耗時;

9) 標準化:支持SQL92 標準,支持 C API、ODBC、JDBC、ADO.NET 等介面規范,

8、 常見MPPDB

● GREENPLUM(EMC)

● Asterdata(Teradata)

● Nettezza(IBM)

● Vertica(HP)

● GBase 8a MPP cluster(南大通用)

9、 MPPDB、Hadoop與傳統資料庫技術對比與適用場景

MPPDB與Hadoop都是將運算分布到節點中獨立運算后進行結果合并(分布式計算),但由于依據的理論和采用的技術路線不同而有各自的優缺點和適用范圍,兩種技術以及傳統資料庫技術的對比如下:

特征

Hadoop

MPPDB

傳統資料倉庫

平臺開放性

運維負責度

擴展能力

擁有成本

系統和資料管理成本

應用開發維護成本

SQL支持

中(低)

資料規模

PB級別

部分PB

TB級別

計算性能

對非關系型操作效率高

對關系型操作效率高

對關系型操作效率中

資料結構

機構化、半結構化和非機構化資料

結構化資料

結構化資料

綜合而言,Hadoop和MPP兩種技術的特定和適用場景為:

● Hadoop在處理非結構化和半結構化資料上具備優勢,尤其適合海量資料批處理等應用要求,

● MPP適合替代現有關系資料機構下的大資料處理,具有較高的效率,

MPP適合多維度資料自助分析、資料集市等;Hadoop適合海量資料存盤查詢、批量資料ETL、非機構化資料分析(日志分析、文本分析)等,

由上述對比可預見未來大資料存盤與處理趨勢:MPPDB+Hadoop混搭使用,用MPP處理PB級別的、高質量的結構化資料,同時為應用提供豐富的SQL和事物支持能力;用Hadoop實作半結構化、非結構化資料處理,這樣可以同時滿足結構化、半結構化和非結構化資料的高效處理需求,

 

轉載請註明出處,本文鏈接:https://www.uj5u.com/shujuku/1084.html

標籤:大數據

上一篇:滴滴AI Labs斬獲國際機器翻譯大賽中譯英方向世界第三

下一篇:滴滴資料倉庫指標體系建設實踐

標籤雲
其他(123570) Java(13369) Python(12729) C(7542) 區塊鏈(7372) JavaScript(7049) 基礎類(6313) AI(6244) 腳本語言(PerlPython)(5129) 非技術區(4971) Android(4120) MySQL(4012) Linux(3394) C語言(3288) C++語言(3117) Java相關(2746) 疑難問題(2699) 單片機工控(2479) Web開發(1951) 網絡通信(1793) 數據庫相關(1767) VB基礎類(1755) PHP(1727) 開發(1646) 系統維護與使用區(1617) .NETCore(1586) 基礎和管理(1579) JavaEE(1566) C++(1527) 專題技術討論區(1515) Windows客戶端使用(1484) HtmlCss(1466) ASP.NET(1428) Unity3D(1354) VCL組件開發及應用(1353) HTML(CSS)(1220) 其他技術討論專區(1200) WindowsServer(1192) .NET技术(1165) 交換及路由技術(1149) 語言基礎算法系統設計(1133) WindowsSDKAPI(1124) 界面(1088) JavaSE(1075) Qt(1074) VBA(1048) 新手樂園(1016) 其他開發語言(947) Go(907) HTML5(901) 新技術前沿(898) 硬件設計(872) 區塊鏈技術(860) 網絡編程(857) 非技術版(846) 一般軟件使用(839) 網絡協議與配置(835) Eclipse(790) Spark(750) 下載資源懸賞專區(743)

熱門瀏覽
  • GPU虛擬機創建時間深度優化

    **?桔妹導讀:**GPU虛擬機實體創建速度慢是公有云面臨的普遍問題,由于通常情況下創建虛擬機屬于低頻操作而未引起業界的重視,實際生產中還是存在對GPU實體創建時間有苛刻要求的業務場景。本文將介紹滴滴云在解決該問題時的思路、方法、并展示最終的優化成果。 從公有云服務商那里購買過虛擬主機的資深用戶,一 ......

    uj5u.com 2020-09-10 06:09:13 more
  • 可編程網卡芯片在滴滴云網路的應用實踐

    **?桔妹導讀:**隨著云規模不斷擴大以及業務層面對延遲、帶寬的要求越來越高,采用DPDK 加速網路報文處理的方式在橫向縱向擴展都出現了局限性。可編程芯片成為業界熱點。本文主要講述了可編程網卡芯片在滴滴云網路中的應用實踐,遇到的問題、帶來的收益以及開源社區貢獻。 #1. 資料中心面臨的問題 隨著滴滴 ......

    uj5u.com 2020-09-10 06:10:21 more
  • 滴滴資料通道服務演進之路

    **?桔妹導讀:**滴滴資料通道引擎承載著全公司的資料同步,為下游實時和離線場景提供了必不可少的源資料。隨著任務量的不斷增加,資料通道的整體架構也隨之發生改變。本文介紹了滴滴資料通道的發展歷程,遇到的問題以及今后的規劃。 #1. 背景 資料,對于任何一家互聯網公司來說都是非常重要的資產,公司的大資料 ......

    uj5u.com 2020-09-10 06:11:05 more
  • 滴滴AI Labs斬獲國際機器翻譯大賽中譯英方向世界第三

    **桔妹導讀:**深耕人工智能領域,致力于探索AI讓出行更美好的滴滴AI Labs再次斬獲國際大獎,這次獲獎的專案是什么呢?一起來看看詳細報道吧! 近日,由國際計算語言學協會ACL(The Association for Computational Linguistics)舉辦的世界最具影響力的機器 ......

    uj5u.com 2020-09-10 06:11:29 more
  • MPP (Massively Parallel Processing)大規模并行處理

    1、什么是mpp? MPP (Massively Parallel Processing),即大規模并行處理,在資料庫非共享集群中,每個節點都有獨立的磁盤存盤系統和記憶體系統,業務資料根據資料庫模型和應用特點劃分到各個節點上,每臺資料節點通過專用網路或者商業通用網路互相連接,彼此協同計算,作為整體提供 ......

    uj5u.com 2020-09-10 06:11:41 more
  • 滴滴資料倉庫指標體系建設實踐

    **桔妹導讀:**指標體系是什么?如何使用OSM模型和AARRR模型搭建指標體系?如何統一流程、規范化、工具化管理指標體系?本文會對建設的方法論結合滴滴資料指標體系建設實踐進行解答分析。 #1. 什么是指標體系 ##1.1 指標體系定義 指標體系是將零散單點的具有相互聯系的指標,系統化的組織起來,通 ......

    uj5u.com 2020-09-10 06:12:52 more
  • 單表千萬行資料庫 LIKE 搜索優化手記

    我們經常在資料庫中使用 LIKE 運算子來完成對資料的模糊搜索,LIKE 運算子用于在 WHERE 子句中搜索列中的指定模式。 如果需要查找客戶表中所有姓氏是“張”的資料,可以使用下面的 SQL 陳述句: SELECT * FROM Customer WHERE Name LIKE '張%' 如果需要 ......

    uj5u.com 2020-09-10 06:13:25 more
  • 滴滴Ceph分布式存盤系統優化之鎖優化

    **桔妹導讀:**Ceph是國際知名的開源分布式存盤系統,在工業界和學術界都有著重要的影響。Ceph的架構和演算法設計發表在國際系統領域頂級會議OSDI、SOSP、SC等上。Ceph社區得到Red Hat、SUSE、Intel等大公司的大力支持。Ceph是國際云計算領域應用最廣泛的開源分布式存盤系統, ......

    uj5u.com 2020-09-10 06:14:51 more
  • es~通過ElasticsearchTemplate進行聚合~嵌套聚合

    之前寫過《es~通過ElasticsearchTemplate進行聚合操作》的文章,這一次主要寫一個嵌套的聚合,例如先對sex集合,再對desc聚合,最后再對age求和,共三層嵌套。 Aggregations的部分特性類似于SQL語言中的group by,avg,sum等函式,Aggregation ......

    uj5u.com 2020-09-10 06:14:59 more
  • 爬蟲日志監控 -- Elastc Stack(ELK)部署

    傻瓜式部署,只需替換IP與用戶 導讀: 現ELK四大組件分別為:Elasticsearch(核心)、logstash(處理)、filebeat(采集)、kibana(可視化) 下載均在https://www.elastic.co/cn/downloads/下tar包,各組件版本最好一致,配合fdm會 ......

    uj5u.com 2020-09-10 06:15:05 more
最新发布
  • 如何宣告一個接受任何型別方法參考的變數Function<>?

    我試圖宣告一個變數,它接受任何型別的方法參考Function<AnyObject, AnyObject or Any Enum>。
    這個方法參考將在映射器中使用,我接受一些輸入并通過呼叫另一個物件的方法來映...

    uj5u.com 2021-10-16 15:27:18 more
  • 為什么方差會對flatmapto函式產生影響?

    我想了解這個函式: 我想了解這個函式。
    public inline fun <T, R, C : MutableCollection<in R>> Array<out T>。 flatMapTo(目的地。C, transform: (T) -> Iterable<R> ): C...

    uj5u.com 2021-10-16 15:26:04 more
  • 我如何使用一個`任務<string>`實體作為方法的任務<string?>引數?

    我如何使用一個Task<string>實體作為一個方法的Task<string?>引數?
    如果我使用啟用的nullability,并且我有兩個異步方法,比如...... 如果我使用啟用的nullability,并且我有兩個...

    uj5u.com 2021-10-16 15:26:00 more
  • Webpack沒有捆綁匯入和使用的功能

    我試圖在我的函式中包含和使用BootstrapCookieConsentSettingsnpm 包bootstrap-cookie-consent-settings中的函式,initConsentBanner但 webpack 總是將其丟棄并且不包含它,即...

    uj5u.com 2021-10-16 15:25:31 more
  • 如何用Swift泛型處理成功和錯誤的API回應?

    我正試圖撰寫一個簡單的函式來處理回傳 JWT 令牌的認證 POST 請求。
    我的LoopBack 4 API將令牌作為一個JSON資料包回傳,其格式如下:
    { "token"/span>: "my. jwt.token" }

    如...

    uj5u.com 2021-10-16 15:25:24 more
  • 從抽象的通用方法中回傳派生類的實體

    我想在這里做的事情有點難以描述。我目前的需求要求我有一個可以實作介面的列舉型別。雖然不是最漂亮的解決方案,但這是我想出的辦法; )。

    我的問題本質上是,是否有任何方法來...

    uj5u.com 2021-10-16 15:24:59 more
  • Java自參考的通用型別

    雖然這個問題的核心已經被問過很多次了,但是有一個問題還沒有被問到(或者說我還沒有找到)。
    在 Java 中,沒有辦法擁有一個參考型別本身的泛型。你可能會說 "如果你最終嘗試了,那...

    uj5u.com 2021-10-16 15:24:06 more
  • Kotlin中的泛型:如何實體化實作了介面的泛型類

    我的問題是,當一個通用類實作了一個介面時,我無法將其實體化。
    實體化代碼如下;
    class MainClass {
    fun mainMethod(){
    val access = EADBAccess<AppUserModel> (Ap...

    uj5u.com 2021-10-16 15:24:00 more
  • 在CSS檔案中使用:local有什么好處?

    我一直在學習在 React 中使用 CSS 并遇到了 CSS 模塊的想法,作為其中的一部分,我遇到了這篇文章https://blog.fearcat.in/a?ID=00550-af5ece9b-eb49-4e13 -8711-26e00c48c84e...

    uj5u.com 2021-10-16 15:22:38 more
  • POST后的PHP重定向

    我正在使用谷歌登錄,并且大部分時間都在那里。用戶成功登錄,我可以訪問我的 mysql 用戶表來查找用戶記錄。在完成用戶處理并設定 $_SESSION 變數后,我想從 POST 頁面重定向回我...

    uj5u.com 2021-10-16 13:40:46 more